## Archive for the ‘Levenshtein’ Category

### Java example of Levenshtein’s distance algorithm

June 28, 2010

The purpose of this algorithm is to measure the difference between two sequences/strings. It is based around the number of changes required to make one string equal to the other.

It is aimed at short strings, it usage is spell checkers, optical character recognition, etc.

Wikipedia entry can be found here:

```
public class Levenshtein
{
private String compOne;
private String compTwo;
private int[][] matrix;
private Boolean calculated = false;

public Levenshtein(String one, String two)
{
compOne = one;
compTwo = two;
}

public int getSimilarity()
{
if (!calculated)
{
setupMatrix();
}
return matrix[compOne.length()][compTwo.length()];
}

public int[][] getMatrix()
{
setupMatrix();
return matrix;
}

private void setupMatrix()
{
matrix = new int[compOne.length()+1][compTwo.length()+1];

for (int i = 0; i <= compOne.length(); i++)
{
matrix[i][0] = i;
}

for (int j = 0; j <= compTwo.length(); j++)
{
matrix[0][j] = j;
}

for (int i = 1; i < matrix.length; i++)
{
for (int j = 1; j < matrix[i].length; j++)
{
if (compOne.charAt(i-1) == compTwo.charAt(j-1))
{
matrix[i][j] = matrix[i-1][j-1];
}
else
{
int minimum = Integer.MAX_VALUE;
if ((matrix[i-1][j])+1 < minimum)
{
minimum = (matrix[i-1][j])+1;
}

if ((matrix[i][j-1])+1 < minimum)
{
minimum = (matrix[i][j-1])+1;
}

if ((matrix[i-1][j-1])+1 < minimum)
{
minimum = (matrix[i-1][j-1])+1;
}

matrix[i][j] = minimum;
}
}
}
calculated = true;
displayMatrix();
}

private void displayMatrix()
{
System.out.println("  "+compOne);
for (int y = 0; y <= compTwo.length(); y++)
{
if (y-1 < 0) System.out.print(" "); else System.out.print(compTwo.charAt(y-1));
for (int x = 0; x <= compOne.length(); x++)
{
System.out.print(matrix[x][y]);
}
System.out.println();
}
}
}

```